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ABSTRACT 

We study the algebra U~ obtained via Lusztig's 'integral' form [Lu 1, 2] 

of the generic quantum algebra for the Lie algebra g -- s[2 modulo the two- 
sided ideal generated by K l - 1. We show that U; is a smash product of 

the quantum deformation of the restricted universal enveloping algebra u¢ 
of g and the ordinary universal enveloping algebra U of g, and we compute 

the primitive (= prime) ideals of U¢. Next we describe a decomposition of 

u¢ into the simple U-submodules, which leads to an explicit formula for 

the center and the indecomposable direct summands of U¢. We conclude 

with a description of the lattice of cofinite ideals of Ui in terms of a 

unique set of lattice generators. 

0. In troduct ion  

G. Lusztig constructed in [Lu 1,2,3] quantum algebras associated to the defining 

relations of the finite-dimensional semi-simple Lie algebra g. The method used 

there is similar to the one employed by Kostant [Ko] in his construction of the 

hyperalgebra for g. We refer to Lusztig's algebra as the quantum hyperalgebra 

of g. 

Let g = sl2 be the rank 1 simple Lie algebra. Fix a field ]K of characteristic 

zero containing a primitive g-th root of unity ( of an odd order. We let Uq stand 

for the usual generic quantum algebra of 8[2. We let [/i denote the quantum 

algebra associated with s[2 as in [Lu 1]. We define Ui as the quotient of Ui 
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modulo the ideal generated by K e - 1. We denote by u¢ the Frobenius-Lusztig 

kernel in U; and let U stand for the ordinary enveloping algebra of s[2 over I~ 

The goal of this paper is to obtain an explicit description of the primitive 

ideals, the center, blocks and the lattice of cofinite ideals of U¢. 

The paper is organized as follows. In Section 1 we show that Ui is the smash 

product of the Frobenius-Lusztig kernel and U. This feature of U¢ is one that 

distinguishes this case from the higher rank cases, and informs the structure of 

U;. The theory of simple modules and their annihilators is taken up in Section 

2. Here we point out that the prime ideals are primitive. The main result is the 

existence of the Steinberg-Lusztig factorization [Lu 1] for every (not necessarily 

finite-dimensional) simple U;-module and an explicit formula for a primitive 

ideal. As a technical preliminary we give the presentation of the "diagonal" 

part U~ of U~ by generators and relations. The results of this section admit of 

a generalization to all semi-simple finite-dimensional g. This has been carried 

out in [CK 2]. However, in the present case the proof proceeds along different 

lines which yield a stronger result. 

In Section 3 we describe the decomposition of u¢ into a direct sum of simple 

U-modules. The exposition relies heavily on the structure of principal inde- 

composable modules for u;. In Section 4 we compute the center of U;. As a 

consequence we show that every indecomposable direct summand (block) of U¢ 

is of the form eU~ where e is a block idempotent of u~. 

Section 5 contains a description of the lattice of cofinite ideals. An important 

feature of the lattice is its distributivity. Consequently it has a unique set 

of lattice generators, namely, the meet-irreducible ideals. We show that each 

such ideal is the annihilator of a simple, Weyl or co-Weyl module, or else the 

annihilator of the injective hull of a simple finite-dimensional module, viewed 

as comodule for the finitary dual of U;. For a more precise statement on the 

structure of these ideals, see Theorem 7. 

It should be noted that the complete lattice of two-sided ideals of Uq is due to 

[Ba]. His classification asserts in part that a cofinite ideal is a unique product 

of maximal ideals. This can be seen directly as follows. Let I be such an ideal. 

Then Uq/I is finite dimensional, hence a semisimple Uq-module. Therefore 

I -- Nmr, where the mT run over all maximal ideals containing I. But, as 

Ex t , (X ,  Y) = 0 for all finite dimensional Uq-modules X and Y, a result in [Mo 

1] yields N mr = YI mr. 

The main theorems of Section 5 are parallel to the just-mentioned result of 

[Ba]. A description of the entire lattice of two-sided ideals remains an open 
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question, which will be addressed in a later paper. 
We fix some more notation. The comultiplication in U¢ and U will be denoted 

by A¢ and A, respectively. An element of the form [g;cl [Lu 1] defined in Uq t t J 
K;c K;c will be marked by a subscript q. Unsubscribed [ t ] is [ t ] @ 1. An unmodified 

® means ®K. We recall the definition of the quantum Casimir element. This is 

c¢ = FE + 4K + 4-1K -1 
(4  - -  4--1)  2 

It is straightforward to check that c~ lies in the center of Ui 

1. S m a s h  p r o d u c t  r e p r e s e n t a t i o n  of U¢ 

In what follows we put g equal to 812 and denote by {e, h, f} its standard basis. 
By [Lu 3] there exists a unique Hopf algebra map Fr: U¢ -+ U, called the 

Frobenius map, specified on generators of Ui as follows: 

Fr(E) = Fr(F) = 0 ,Fr(g)  = 1,Fr(E (~)) = e and Fr(F (0) = f. 

Let u;  be the subalgebra of Ui generated by E, F and K. Put  u~ = u;NKer e. 
Combining results of [Lu 3] and [An] we know that Ker Fr is generated by u~- as a 
left or right ideal. Moreover, Fr induces a right U-comodule algebra structure on 
U; via p: U¢ -+ U; ® U, p = (I ® Fr) A¢, where I is the appropriate identity map. 
We conclude using a couple of Schneider's results [Sch 1,2] that ui  = U~ ° u. The 

upshot of these remarks is that we have an exact sequence in the category of 
Hopf algebras 

K ----+ u¢ ----+ U¢ V~U >K 

We want to show that the above sequence splits by an algebra and right 
U-comodule homomorphism 7: U --+ U~ satisfying ~ o 7 = I. 

LEMMA 1: The mapping ? defined on g by ?(e) = E (0, ?( f )  = F(e) extends to 
an a/gebra homomorphism U -~ U; 

Proof: Let H = [E (e), F(t)]. We must show that [H, E(0] = 2E (~) and [H, F(0] 
= -2Fg) .  To this end we recall that by [Lu 1] we have 

H =  [K]  + f ,  where f =  E F ( e - t ) [ K ; - 2 ~ - t ) ]  E(e-t)" 
l_<t_<e-1 

Since 
F(8)rK;c 1 = [ K ; c +  2S]F(S ) 

t t J t t 
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t 

An easy induction on s leads to the formula 

~2(i-1)+1K -t- ~-2(i-1)-1K-1 
(1.1) F(S)E(S) : 1 ~ i ( c ; _  ) -- " 

Thus f lies in the subalgebra of u¢ generated by K and c¢ which is centralized 

by E (e) and F (~). It follows that  

- -  

Applying [Lu 2, (g9)] we obtain in U.4 

K; 2el 2e K r l  r 1 

o4j<J 

which, in view of [~e]; = 0 for 0 < j < 4, reduces to 

= ~ + = ~ + 2  

in U¢. Thus we arrive at [H, E (e)] = 2E (e) . Similar computations give [H, F (0] 
= -2F(e).  | 

THEOREM J.: U¢ --- u¢~U is the smash product of u¢ and U. 

Proof: As 7 is an algebra map, it is convolution invertible. In fact, it is also a 

U-comodule map, i.e., p o 7 = (7 ® I) o A. Since the mappings in the last equa- 

tion are algebra homomorphisms, it suffices to check it on generators, which is 

straightforward. By [DT], 3' induces U-action in u¢ via v.a = 7 (vl) aT-  1 (v2), v E 

U, a E u¢ (where Av is written as Vl ® v2). This action gives rise to the smash 

product u~#U,  which is isomorphic to U~ by op. cit. | 
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2. S imple  m o du le s  and  p r imi t ive  ideals 

The subalgebra Up of U¢ is by definition generated by K and the elements 
[h~;C],c E Z , t  E Z+ [Lu 1,2]. It is responsible for the weight theory in the 
category of U¢-modules. We are interested in finding generators and relations 
for Up. The following result appears in [CK 2]. We include its proof for the 

reader's convenience 

PROPOSITION 1: Up is a commutative algebra generated by K and [~] subject 

to the relation K ~ = 1. 

Proof: We apply the Doi-Takeuchi theory of cleft extensions to Up. We remark 
that Up is a subcoalgebra of U¢, and that Fr sends Up to U °, the subalgebra of 
U generated by h. It follows that p restricted to Up induces a right U°-comodule 
structure on the latter. We define an algebra homomorphism ¢: U ° ~ Up by 
sending h to [K]. We observe that ¢ splits Fr as a U°-comodule map. 

We conclude by [DT] that Up = A # a U  °, where A = (U~) c°v° . Further, since 

¢ is an algebra map, the cocycle a is trivial. Also Up is commutative, therefore 

the action of U ° is trivial as well. Thus U~ = A ® U °. It remains to identify 
A. Let u~ = IK[K] be the subalgebra of generated by K. We have that A is the 
subalgebra of coinvariants in Up, hence A = u¢ n Up. Using the PBW-theorem 

for U¢ one can see readily that A = u~, and the proof is complete. | 

Remark 1: We sketch a direct proof of the proposition. First of all we have 
{ from [Lu 2] that U~ is spanned by the set K t ][5 -- 0, 1; t > 0}. The relation 

---- K K e 1 enables us to reduce that set to the subset {[ t][t _> 0}. The last step is 
a formula of independent interest (cf. [Lu 1, 4.3]). 

LEMMA 1': Let m be a positive integer written as m = mo + £ml ,0  <_ mo <_ 

- 1. Then [~] = [ K 1([~]~ where the second factor is the ordinary binomial 
L ? ~ O J \ m l  1 '  

expression. | 

Remark 2: The lemma fails without the assumption K e -- 1. 

The Proposition follows readily. For, the sets 

form bases for u~ and the subalgebra generated by [g], respectively. 
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Remark 3: According to the Cartier-Kostant-Milnor-Moore theorem (see [Mo, 

5.6.5]) U~ = KG®U(P), where G is the set of group-like and P is the Lie algebra 

of primitive elements in U~. The Frobenius map restricted to U(P) induces an 

isomorphism of U(P) with U °. Hence dim P = 1 and there is a unique primitive 

d such that Fr(d) = h. We want to give an explicit formula for d. u~ = K[K] 

has g minimal idempotents ei, 0 < i < g - 1. Explicitly 

1 l - 1  " / 

It follows by a direct computation that A;em = 2i+j--m ei ® ej, where the =_ 

denotes congruence modulo g. On the other hand, one can verify that 

A¢ = ® 1 + 1 ®  + E e i®e j .  
~+j>/ 

We now define d by the formula 

1 (  
e-1 Zm m) 
m ~ l  

Using the above formulas it is straightforward to check that d is indeed a 
primitive element. For an alternate treatment see [CK 2]. | 

We now turn to a computation of characters of U~. Let X = Alg(U~, K) 

be the group of algebra homomorphisms under convolution. To every )~ E X 

we associate its weight A = (r, a) according to the equalities x(K) = ~r and 

Let A ~ Ze × K be the set of all weights. We remark that every integer m can 

be viewed as a weight. For, writing (uniquely) m = mo + m'g, 0 <_ mo ~ g - 1, 

we can identify m with the pair (mo, m~). The next lemma has been proved in 

[CK 2]. We give a proof for the sake of completeness. 

LEMMA 2: Let A = (r,a) and # = (s,l~) be two weights. Then 

{ ( r + s , a + l ~ ) ,  i f r  + s  < ~, 
A + # =  ( r + s - g , a + ~ + l ) ,  else. 

Proof: Pick two characters f and g of weight A and #, respectively. Since K 

is a group-like (] • g)(K) = (~+s. Further, recall the formula [CP, 11.2] 

o_<j<e 
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In view of K e = 1 and f([mK]) = [r]¢  for every m < e, and similarly for g, it 

follows readily that 

r s 
( f . g ) ( [ K ] )  = a + Z ' + j 3  where Z ' =  Z ( - ( r+s) j [ ,_ j]¢[ j] ( .  

l<j_<e 

It remains to notice that  as ['~]¢ -- 0 for all m < e, the identity [Lu, 2(g 9-I0)] 

shows that ~ '  = [r+s], and the assertion follows from [Lu, 1(3.2)]. | 

As in the classical case, we define a partial order on A by saying A <_ # 

A = # - 2n for some n e Z +. Let K~ be the 1-dimensional U~-module of 

weight A = (r ,a) ,  i.e., K~ = Kv~ with Kv~ = ~rv~ and [K]v~ ---- av~. We put 

B + = U~U~ and observe that  the U~ action on Kx can be lifted to the B +- 

action by setting E(n)v~ = 0 for all n > 0. We define (as usual) the U;-module 

V(A) by V(A) = U; ®B+ K~ with the left regular action of U¢. One can check 

easily that F(n)v~ has weight A - 2n. By the standard argument V(A) has a 

unique maximal submodule and a unique irreducible quotient denoted by L(A). 

In preparation for the next statement we fix some notation. For a U-module 

M we denote by M Fr the U~-module obtained via the pull-back along Ft. For 

a weight A = (mo,ml)  with ml E Z we write A = m, where m = mo + m l ~ .  

If ml = 0 we say that A is ~- res t r ic ted .  We abbreviate L(mo,ml) to L(ra). 
For an a E K we let L(a) denote the highest weight a simple U-module. For a 

weight A we denote by P(A) the primitive ideal 

P(A) = annv, L(A). 

If A = (r, a) we set 

p(r) = annu~ L(r) and P(a) = annuL(a). 

THEOREM 2: (i) Every prime ideal of U¢ is primitive. 
(ii) Every primitive ideal o£ U¢ has the form P(A) for some weight A. 

Furthermore, ifA = (r, a) then we have P(A) = p(r)U + u~P(a) .  

(iii) Every simple U~-module S has the Steinberg-Lusztig factorization 

S ~_ L(r) ® ~Fr 

for a suitable restricted r and a U-module -S. Further, L(r) ® L(a)  Fr is isomor- 
phic to L(r, a). 

First a Lemma. 
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LEMMA 3: Let N be the nilpotent radical of u¢. Then N is stable under U and 
the U-module u c /N  is trivial. 

Proof: By [Lu 1, 7.1] the restriction of L(r) to u~ is a simple module for every 

restricted r. In fact, these exhaust all simple u¢-modules which can be seen 

directly or following the argument of the classical modular case [Cu]. Thus 

N = N0<r<ep(r). Now, U-invariance of every prime ideal of u~ follows from 

[Ch 1] or, more immediately, from [GW, Prop. 1.1] in view of the fact that every 

prime of u~ is a minimal prime. 

Since u~ is generated by K, E, F it suffices to show that [E (e) , X] and IF (e) , X] 

lie in N for every generator X. This is clear for X = K as K commutes with 

E (e) and F (e). Suppose X = F. Then we have 

[E(e),F] = [ K ; - g +  1]Ee_l. 
1 

Also, Ee-lL(r)  = 0 for all r < ~-1.  Thus [E (e), F] lies in every p(r) for r ~ g-1 .  

Let r = ~ - 1. Recall that L(g - 1) is the span of {Fiv0[0 < i < ~ - 1}, where 

v0 is a primitive vector of weight e - 1. It follows that Ee-lL(e - 1) = Kv0. As 

[g;lt+l]Vo = 0, the proof is complete. | 

We proceed to the proof of the theorem. (i) For every U-invariant ideal I 

of u¢, it is straightforward to check using the smash product structure that 

UI = IU. Hence NU is a nilpotent ideal of U¢. In view of the above lemma 

U;/NU is semisimple, and hence NU is the Jacobson radical of U¢. 

Now, let P be a prime ideal of U¢. By the opening remark P D NU. Passing 

on to U¢/NU ~ uc /N  ® U ~- ~Mt(U) we may assume that P is a prime ideal 

of Mt(U) for some t. It follows readily that P = Mr(p) for a prime ideal p of 

U. Then by [NG] p is primitive, and by [Po] so is P. 

(ii) Pick P, a primitive ideal of U¢, and a simple module S with P = annv¢ S. 

Let p = P N u;. Then p D N, hence p is a prime ideal of u¢. For, every ideal of 

u; containing p is U-invariant. Therefore, the inclusion I -  J C p, I, J ideals of 

u¢ implies IU .  JU C P, hence I or J lies in p. 

Choose r such that p = p(r) and let 7c: U¢ ---4 u ; /p®U be the map composed 

of the natural epimorphism U¢ --~ U¢/pU and the isomorphism U¢/pU "~ 
u ¢ / p @ U  sending x # y + p U  to ( x + p ) ® y .  We remark that u¢/p is just 

EndK L(r) because L(r) is absolutely simple. Indeed, the standard argument 

[Lu 1] for simplicity of L(r) works for every field containing Q(~). Denoting 

u¢/p by E we see that S is an E ® U-module. Now, the standard argument 
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with minor modifications as e.g. in [St, Lemma 68] shows that  S = L(r )  ®-S for 

a suitable U-module S. 

Let P denote the annv S.  E ® U / P  acts faithfully in S, which implies that  

E ® P is the annE®v S. We want to compute T := 7r -1 (E ® P).  To this end 

we notice the equalities u¢ n pU = p and P N pU = (0), both of which come 

directly from the K-isomorphism U¢ _~ u¢ ® U. But then 7r(uCP) -- E @ P, 

which shows that  T = pU + uCP. On the other hand, 7r(P) = annEov S and 

therefore P = T. Further, by Duflo's theorem [Du] P = P(a) ,  which completes 

the proof of (ii). 

For part (iii) we will show that  the identity map x ® y ~ x ® y: L(r)  @ -S 
--Fr 

L(r )  ® S , x E L(r), y E S is a U;-isomorphism. This must be checked on the 

generators. The latter either belong to u¢ or to 7(U). We'll do both cases. 

Recall that  U; acts in L(r )®L(a)  Fr via the pullback along p = (I®Fr)A¢ with 

U¢ ® U acting along the factors. Hence for an a E u; ,  in view of Fr(a) = c(a), 

we have p(a) (x  ® y) = ax  ® y as needed. On the other hand, for a 7(v),v e 

U we have p(~/(v)) = 7(vl) ® v2 on account of ~ being a U-comodule map. 

Further, 7(vl)" x = e(7(Vl))X for every x E L(r)  because both E (e) and F (e) 

annihilate L(r )  for every restricted r (a rank 1 phenomenon). But then we see 

that  p(~/(v) ) (x  ® y) = e (v l ) x  ® v2y = x ® vy  as needed. 

We turn now to the last assertion in (iii). Fix two primitive vectors v + and w + 

in L(r) and L(a),  respectively. By the preceding argument v + ® w  + is a primitive 

vector in L(r )  ®L(a)  Fr. It also implies K o ( v  + ® w  +) = K v  + ® w  + = ( rv+ ® w  +, 

where the "o" denotes the action of U; in L(r)  ®-I~(a) ~ .  As for the action of [ g],  

recall that  [ K ] = H -  f in notation of Lemma 1. Hence p(H)  = [p(E (e) , p(F (e)] = 

l ® [ e , S ] = l ® h ,  w h i l e p ( f ) = f ® l .  T h u s f . ( v  + ® w + ) = f v  + ® w + = O, and 

therefore Ho (v + ® w +) = v + ® hw + --- a v  + ® w +. This shows that  the weight 

of v + ® w + is A = (r ,a) .  It remains to note that  by [3a, 5.8.1] our module is 

irreducible. | 

3. Decomposition of the U-module u¢ 

We need to review the structure of the PIMs (principal indecomposable modules) 

for u ; .  For a start, we recall that  by a theorem of Curtis-Lusztig [Lu 1, 2] (or 

directly) u;  has g-simple modules of the form L(r)lu ~ with r e-restricted. We 

let P(r)  denote the projective cover of L(r)  viewed as a u¢-module. We prefer 

to construct these modules by exploiting the comodule theory of the finitary 

dual (U¢) ° of U;. We refer to Section 5 for a fuller discussion of this issue. Let 

]g~ [SL(2)] be the (-deformation of the coordinate algebra of SL2(K)  ([CK 1]). 
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It turns out that  (U¢) ° ~ I~[SL(2)] (cf. §5). Green's theory [Gr] guarantees 

existence of the injective hull Is  for every right IK~ [SL(2)]-comodule S. By [CK 

1], or using the isomorphism just mentioned, we know that  any simple comodule 

is isomorphic to L(m) for some m E Z +, treated as a right IK~ [SL(2)]-comodule. 

Going in the opposite direction we can view I(m): = IL(m) as a left U¢-module. 

Restricting m to the interval 0 < r < g we arrive at the g U¢-modules I(r). 
Restricting I(r) to u¢ we obtain the P(r). This can be seen as follows. Thanks 

to [APW 2, 4.6; Li, 6.3] the restriction I(r)iu < is the injective hull of L(r)[u~. 

As u¢ is Frobenius, I(r)lu ~ = P(r). An alternate construction of PIMs can be 

found in [Su]. 

To describe the structure of the P(r) we need to bring in a new family of 

U¢-modules. For an m E Z + we denote by W(m)  the U¢-module generated by 

a primitive vector v of weight m subject to conditions F(J)v = 0 for j > m and 

F(~)v ~ 0 for all i _< m. We refer to W(m)  as the mth  W e y l  m o d u l e  for U¢. 

The structure of I(r) is as follows, [CK 1] or [Ch 2]. Let p be the reflection of 

r in ~ - 1, i.e., p(r) = 2(~ - 1) - r. For every r ~ ~ - 1, I(r) is characterized 

as the unique extension of W(p(r)) by L(r), and I(~ - 1) = L(g - 1). Further 

I(r), r ~ g - 1, is a uniserial module with the factors L(r), L(p(r)), L(r) in that  

order. 

Put  r' = ~ - 2 - r. Then p(r) = r' + g, and by the Steinberg-Lusztig theorem 

[Lu 1, 7.4] we have 

L(p(r)) ~_ L(r') ® L(1) Ft. 

Restricting to u¢ we get L(p(r))iu~ ~- L(r') ~ L(r'). This yields in turn 

(3.1) P(r) ~ 2L(r) ® 2L(r'), 

where ~ signifies that  two modules have the same composition factors. It follows 

readily that  PIMs P(r) and P(s) are linked if and only if s = r ~ or s = r = ~ -  1. 

Therefore, the block ur of u¢ containing P(r) has only one more PIM, namely, 

P(r~). Further, it is elementary that  a P I M P  associated with the absolutely 

simple module L has multiplicity dim L in its block. Thus u~ is the direct sum 

of r + 1 copies of P(r)  and r' + 1 copies of P(r~). 

The next theorem requires an explicit decomposition of ur into the direct sum 

of PIMs, and a special basis for P(r). 

We start by describing a special basis for P(r). Let V be a nonsplit extension 

of W(p(r)) by L(r). We recall that  every finite-dimensional U¢-module is semi- 

simple as a U~)-module [APW 1, §9]. 
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Therefore VIu ~ "~ L(r)lu~ @W(p(r))lu ~ . It follows that  V contains an element 

Zo of weight r which is not in W(p(r)).  The image To of zo in L(r) is a primitive 

vector there, hence the set {F(i)~oli = 0 , . . .  , r}  forms a basis for L(r). Note 

that  ESo -- FSr  -- 0. Let's pull the F(0~o into V by setting zi = F(Ozo, 
i = 0 , . . . ,  r. Then Ezo and Fzr lie in W(p(r)).  Clearly their weights are r + 2 

and - r  - 2, respectively. Let v0 be a primitive generator of W(p(r)) ,  so that  

{vi = F(Ovoli = 0 , . . . ,  p(r)} is a basis of W(p(r)).  Call such a basis s t a n d a r d .  

Then weight considerations lead to Ezo = ave-r-2 and Fzr  = bv~ for some 

a, b E K These are "structure constants" of the extension. They depend on the 

choice of a standard basis for W(p(r)).  We remark that  neither a nor b is zero. 

For, the socle of W(p(r)) is the subspace spanned by {v~,+l , . . . ,  vt-1 }, and this 

is also the socle of V on account of V being nonsplit extension. Now, were a -- 0, 

Zo would be a primitive vector of V. Then z0 would generate the submodule 

of V missing soc V, a contradiction. Likewise, b = 0 implies the submodule 

U¢zr misses soc V. We mention in passing that  in the standard basis generated 

by E(r '+l)z0 the structure constants equal [~ - r - 1] and ( -1 ) t i e  - r - 1], 

respectively. It follows that  I(r) is a unique nonsplit extension of W(p(r))  by 

L(r). 
The desired basis is this. Define p(r) vectors wk by the formulas 

wj = E(r'+l-J)zo, j = 0, 1 , . . . , r  ~, w~,+l+i = v~,+l+i, i = 0, 1 , . . . , r ,  

(3.2) we+i = F(r+l+i)zo, i = 0, 1 , . . . , r ' .  

Thanks to the fact that  ab ~ O, the wj are nonzero scalar multiples of vj, hence 

they form a basis of P(r) 
We proceed to the decomposition of ur.  Let 

B = { 0 , 1 , . . . , ( e - 3 ) / 2 }  and / } = B U { e - 1 } .  

Recall the quantum Casimir element c¢. It can be checked that  c; acts on L(r) 
by multiplication by the scalar 

~r+l  .~ ~--(r-{-1) 
)~r = 

One can see easily that  Ar = As iff r + s = g - 2. This limits the set of subscripts 

on Ar to /~ .  Let 

(~(X) ---- (X -- )~--1) H (X -- ~r)  2. 
fEB  

It turns out that  ¢(x)  is the minimal polynomial of c; over K For, suppose that  

f ( x )  is a polynomial annihilating c¢. Then from f (c¢)L(r)  = 0 it follows that  
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f(~T) = 0. This being the case for all r E/}, f ( x )  is divisible by l'-IreB(x - At). 

In the same vein, f (c¢)P(r)  = 0 implies t h a t / ( x )  is divisible by ¢(x). On the 

other hand @(c¢) = 0, because ¢(c ; )P( r )  = 0 for all r E/~. 

It follows immediately that  the algebra IK[c;] is isomorphic to the direct sum 

of algebras ]K[x]/((x - Ar)2),r e B and K Let eT,r E B,e~_l be idempotents 

corresponding to summands isomorphic to IK[x]/((x - ~,.)2), r e B and IK, re- 

spectively. The number of summands u;e~ of u;  equals the number of blocks, so 

that  each u ; ~  is block algebra. A simple verification yields that  er annihilates 

every indecomposable P(s) with s ~- r, r r. Thus uCe~ = ur  for every r E/~. 

Recall the idempotents e j , j  = 0, 1 , . . .  ,~ - 1, defined in Remark 3. They give 

rise to the decomposition 

U r ~ ~ Urej" 

o_<j_<~-] 

In fact every urej is a PIM for u~, because, as we mentioned earlier, ur is a 

direct sum of ~ PIMs. 

THEOREM 3: (1) In the foregoing notation the u~erej are U-stable. 

(2) Let Urej be a summand ofu r  isomorphic to P(r).  As a U-module Urej is 

a direct sum of2(r  + 1) copies of the trivial representation and 2(r r + 1) copies 

of the defining representation of U, i.e., 

ure j  ~-- L(0)  2(r~-l) • L(1) 2(r'+1). 

Proof'. (1) Since E (e) and F (e) commute with e~ and ej, this statement is clear. 

(2) We start with a P I M P .  Let N be the radical of u~. Then N P  is the 

maximal submodule W of P. Since W is not semisimple, N 2 p  is nonzero; hence 

it equals the socle of P.  

For the remainder of the proof set P = urej. By Lemma 3 in Section 2 N 2 is 

U-stable, therefore N2ej is U-stable. We conclude that  soc P is U-stable. Next 

we note that,  as E (e) and F (~) commute with K,  for every U¢-module M, the 

K-weight subspace Mx, ~ • Ze, is stable under U. Take M = socP.  Then M~ 

is 1-dimensional or zero. Therefore every vector of soc P is U-trivial, i.e., they 

are fixed points under the action of U. Moreover, the formula (3.1) shows that,  

for every weight )~, P~ is 2-dimensional. Since the bottom composition factor 

has only one equal composition factor we see that  the elements of P~, ~ a weight 

of soc P, are fixed by U. As socP  _~ L(r) we get r + l  values of A. This accounts 

for 2(r + 1) copies of L(0) in urej. 

Suppose urej "~ P(r)  and recall the basis w j , j  -- O, 1 . . .  ,r'  as in (3.2) above. 

It remains to show that  none of the wj are U-trivial. Let z0 be a generator of 



Vol. 145, 2 0 0 5  QUANTIZED HYPERALGEBRAS OF RANK 1 205 

weight r of ur.  Then wj = E(P)zo for the p such that  j + p = r p + 1. Keeping 

in mind tha t  z0 is a fixed point we have 

(o ' 

We claim tha t  all terms in the right-hand side of tha t  formula with i < p are 

zero. 

For, suppose p - i > 0. Up to a nonzero scalar F(e-i)E (p-i) equals 

F(t-p) F(p-i) E(p-i). 

Further, by formula (1.1) 

F(P-i) E(P-i) Zo = g(c;, K)(c; - ,k~)Zo 

for a polynomial g(x, y). Also, it is immediate tha t  (c; - A~)z0 lies in soc Urej. 
Now F (e-p) annihilates soc urej because g - p > r for every p. 

For the i = p te rm we have 

_ [ r + p - e ] F ( r + l + j ) z  ° - ( j  1) 
t p J p 

= (--1)P+I[ r '  + 1]We+j. 
t p 

As [r '+l  ] L p J ~ 0 we are done. II 

As a by-product  of the proof we note 

COROLLARY: (1) g 2 is generated by all (c¢ - Ar)er, r • B.  

(2) N 2 consists of U-trivial elements. 

Proof: Both s tatements  follow from the fact tha t  N 2 is the sum of soc P ,  over 

PIMs P,  and  the fact that  soc P(r) is generated by (c~ - )~)z0, where z0 is a 

weight r generator of P(r). | 

4. The center of  U¢ 

We let Z(A) denote the center of a E-algebra A. We can use central idempotents 

e~ to split U; into the direct sum of subalgebras e~Ui. This leads to the splitting 

of Z(Ui) into the direct sum of Z(e~U;), which reduces the description of Z(U¢) 
to Z(erU¢). 
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The smash product representation of U; implies that  erU¢ is isomorphic to 

u~#U, where u~ = e~u¢ is a block of u; .  When r = 6 -1 ,  ue-1 = End L ( ~ -  1) ~_ 

M~(]K). Let N be the radical of u¢ as before. Denote by c = 4re + (h + 1) 2 the 

usual Casimir element of U. Since ue-1 A N = 0, we derive from Lemma 3 that  

e~_lU~ ~- Me(K)®U ~- Me(U). It follows that Z(e~_IU~) = I®Z(U)  = l ® ~ c ] .  

In what follows r ¢ g - 1. We need to review a description of the center of 

u~. The result may be well-known, but we don't have a specific reference. The 

statement is that  Z(u~) is three-dimensional. We sketch a proof of it and also 

construct a basis of the center. 

Let b be the basic algebra of u~. As in ([Su]) b is K-algebra on a basis 

{e, c, a, b, e', c I, a', b I } 

subject to relations 
eC : Ce : C~ 

ab' = ba' = c, 

eI  C I : Ct e I : Cl 

b' a = atb = c t, 

e is a left unit of all non-primed generators and a right unit of all primed 

generators, e' is a left unit of M1 primed generators and a right unit of all 

non-primed generators, and all other products of basic elements are zero. 

It is immediate from the definition of b that  {lb,c,c '} spans Z(b). On the 

other hand, it is straightforward to check that  

(4.1) e~, e~(c~ - at)  and 0 = e~(c~ - , ~ )  e~-2j 
\ j - = 0  - 

lie in the center of Z(u~) and are linearly independent. We conclude that  the 

set (4.1) is a basis of Z(u~). It follows readily that  M = N(e¢ - ,~)er ~ NO is 

the unique maximal ideal of Z(u~) 

We proceed to the proof of 

THEOREM 4: Z(e~U) = Ke~ @ (M ® K[c]). 

Proof: In the easy direction we want to show that  (c¢ -Zr)er®k[c] and 8@k[c] 

lie in Z(eU). To this end we note that  for every x E N2 , y  E U, and w E u r  

we have (xy)w = xwy + x[y, w] = xwy,  because by Lemma 3, [y, w] • N and 

N 3 = 0. Further, every x • Z(ur)  commutes with every element of U, because 

it lies in Y~[c<, K]. By Corollary of Theorem 3 the assertion follows. 
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We now turn to the harder part of the proof. Let z = ~ xiyi, xi E ur,  Yi E U 

be a central element. We may assume that  both sets {xi} and {yi} are linearly 

independent over K Then, as the Yi commute with K,  K z  = z K  implies 

K x i  = x i K  for every i. But every element of u¢ that  commutes with K lies in 

the subalgebra of u¢ generated by c¢ and K.  Further, this subalgebra centralizes 

U. It follows that  the Yi lie in the center of U. 

For the remainder of the proof we abbreviate E (e) to e, F (e) to f and we write 

h for H. Let V = ~ G Kv be a typical two-dimensional U-submodule occurring 

in decomposition of u¢ by Theorem 3(2). Then V # U  is a U - U subbimodule of 

U¢. Consequently, the left multiplication Au by a u E U induces a right U-linear 

map in V # U .  We denote by M~ E M2(U) the matrix of A~ relative to the basis 

{t, v}. We write M for Mc, hence M n for Me n. We put 

Cn dn 

and denote by w the standard automorphism of st2 defined by w(e) = f ,  w( f )  = 

e, w(h) = - h .  To proceed with the proof, we need 

LEMMA 4: (1) The elements of  M n are determined by an. We have bn = 

[f, an], cn = dn = 

(2) an is a polynomial in c and h. Namely, an = ~n= o ci¢i(h) with ¢i(h) of 

degree _< 1. /Thrther, Cn(h) = 1 and Cn-l(h) = 2nh + n(2n + 1). 

Proof: For calculations below one must keep in mind the action of e, f ,  h on 

t and v as well as the definition of c. The action is given by [e, t] = 0, [f, t] = 

v, [h, t] = t and [e, v] = t, If, v] = 0, [h, v] = -v .  By definition we have (*)cnt = 

tan + vcn. We apply adL h and adn f in turn to both sides of (,). For adL h 

we get cnt = t(an + [h, an]) + vg for some g E U, which implies [h, an] = 0 on 

account of t, v being linearly independent over U. Thus an lies in the subalgebra 

of U generated by c and h, as claimed in the first part of (2). Further, [f, cnt] = 

cn[f, t] = c~v. On the other hand, If, tan] + [f, VCn] = t[f, an] + vg for a g E V. 

It follows that  bn = If, an]. As for the last claim in (1), it suffices to do the 

n = 1 case. 

This can be computed directly. The result is 

c t = t ( c + 2 h + 3 ) + 4 v e  and c v = 4 t f + v ( c - 2 h + 3 ) ,  

confirming the last part of (1). 
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The remaining assertions in (2) hold for n = I by the preceding two equations. 

The general case can be verified by induction on n. We leave the details to the 

reader. | 

Conclusion o f  the p r o o f  o f  the Theorem:  Let z be an element of Z(eU) .  From 

the previous remarks we have 

z = e x i  e Kick,  K ] .  
i ( n  

The theorem's statement is equivalent to the claim that  for every i _> 1 

(*) xi lies in the span of (c~ - Ar)e and 9. 

By the first part of the proof we know that  if xi satisfies (.),  then x i d  is 

in the center of U. Hence we may assume that  the leading coefficient xn of z 

doesn't satisfy (*). Next we compute t z  = z t  in two ways. First, t z  = ~ t x i c  ~. 

Second, by Lemma 4 

z t  = XntC n + [ x n t ( 2 n h + n ( 2 n +  1) + x n v ( 4 n e )  + x n - 1  tic n -  1 +lower c-degree terms. 

Since the powers c i are independent over ur®E[h], we can equate the coefficients 

of c n and c ~-1 on both sides of the equation obtaining 

(i) 
(ii) 

tXn = Xnt,  

tXn-- 1 -~ Xnt (2nh  + (2n + 1)n) + x n v ( 4 n e )  + X n - l t .  

Now (i) implies that  xn E Z(uT). For, it shows that  xn commutes with t. 

Replacing t with v and repeating the argument above, we conclude that  xn 

commutes with v. On the other hand, if w is U-trivial, then z w  = w z  clearly 

implies x n w  = w x n .  Since by Theorem 3, ur has a basis whose elements fall 

into either of these two types, we get the assertion. 

(ii) shows that  Xnt -~ x n v  -~ 0, as we are working in the tensor product ur®U.  

Also, by (i) we can write xn = aoe + a l (c ;  - A~)e + a20. Taking into account 

(c~ - A~)t = 9t = 0, because both (c~ - At) and 9 lie in N 2 while t, v E N and 

N 3 = 0, we deduce x ~ t  = aoet = aot = O. This forces ao = 0, a contradiction. 
| 

We proceed to consider the block decomposition of U¢. Let e be a primitive 

central idempotent of u¢. Then cUe is a two-sided ideal of U¢. In fact, it is a 

block of U¢ in the sense of the following 
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COROLLARY: eV~ is all indecomposable algebra. 

Proof'. By the theorem, the center of eU¢ is a local algebra. 

209 

5. Cof in i t e  ideals  o f  U 

In this section we change our previous notation in that  we are going to write 

U for U~ and H for ]g~ [SL(2)]. U ° now stands for the finitary dual of U. The 

starting point of the section is existence of a Hopf pairing ([Ta 1]) between U 

and H. An equivalent formulation is existence of a Hopf map ¢: H ~ U °. 

The construction of ¢ runs as follows (cf. [Ta 2], [deCL]). Let L(1) be the 

2-dimensional representation of U. It gives rise to the coordinate functions 

ci j , i , j  -- 1,2. Let A be the subalgebra of U ° generated by the cij. Then A is 

a Hopf subalgebra of U ° and the natural mapping xij ~ cij, i , j  = 1, 2, where 

xij are the standard generators of H [CK 1], extends to the Hopf algebra map 

H ---> A. In fact, that  map is an isomorphism [Ta 1], and moreover, according 

to [APW 1, Appendix] we have A = U °. Below we will identify H with A. 

Let 7r be the natural algebra homomorphism U --+ (U°) * [Sw, 6.0], 7r(u)(a) = 

a(u) ,u  E U,a E U °. Note that  the image of Tr is in (U°) °. 

We compose 7r with ¢o: (UO)0 ~ H 0 to obtain ¢ = ¢%r: U ~ H °. Explicitly, 

¢ ( u ) ( x )  = = = ( ¢ ( x ) ) ( u ) .  

Using ¢ we define a bilinear form 

(,): U ~ H --> K, (u, x) -- ¢(x)(u). 

For a subspace L of U we set L ± = {x E H[(L,x) = 0}, and likewise for an 

M C H. We refer to the above as the annihilators of L and M, respectively. 

We recall that  a subspace F of H* is said to be dense in H* if F ± = 0 in the 

natural pairing H x H* --+ K A subspace L of U (M of H) is said to be closed 

if L ±± = L ( M  ±± = M). A pairing U × H ~ K is nondegenerate on the left 

(right) if H ± = 0 (U ± = 0). A pairing is nondegenerate if it is both left and 

right nondegenerate. 

LEMMA 5: Every cofinite ideal of U and every finite-dimensional subspace of 

H is closed. 

Proof'. Let I x* stand for the annihilator of I in U*. In view of H = U ° we 

have I x* = I x. But then I ±± = I ±*±, which is I by [Sw, A.1]. 
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The second statement is well-known for a nondegenerate pairing lAb, 2.2]. 

The same proof works for a right nondegenerate pairing. It remains to note 

that  our pairing is right nondegenerate by the equality H = A. | 

We let Acof(U) and Afin(H) denote the lattices of cofinite ideals of U and 

finite-dimensional subcoalgebras of H,  respectively. 

LEMMA 6: (1) For every ideal I of U and every subcoalgebra C of H, I z is a 

subcoalgebra of H and C z is an ideal of U 

(2) Acof(U) is ant±isomorphic with Afin(H) under I ~+ I ±. 

Proof: (1) The usual proof ([Sw, 1.4.3]) of the assertions works here thanks to 

the property ¢(U) dense in H*, which is equivalent to U ± = 0 

(2) It is straightforward to see that the mappings I ~ I ± and C ~ C ± 

set up two inclusion reversing correspondences between Acof(U) and A~n(H). 

Lemma 5 makes it clear that  those maps are mutual inverses of each other. By 

general principles they send unions to joins and conversely. | 

For a coalgebra C we let C C denote the right regular C-comodule. We put 

E = Endc(C C) for the algebra of all C-endomorphisms of C C. We recall that  

C has the natural structure of the right C*-module via c ~ c* = ~ ( c l ,  c*~c2. 

The next very useful lemma is a variation on a well-known statement in the 
theory of coalgebras. A weaker form can be found in [Ho, p. 18]. 

LEMMA 7: E is antiisomorphic with the algebra C* acting on C by the right 

'hits'. 

Proof: In one direction, given f E E we associate with it ¢ = e o f E C*. 

In the opposite direction, we send ¢ E C* to re: x ~-+ x ~-- ¢. One can check 

that f ¢ E  E and the above-defined maps are mutually inverse antiisomorphisms 

between E and the image of C* in E. It remains to note that  by [Sw, 9.1.2] 

¢ ~ f¢ is an injection. | 

A description of the lattice h fin (H) begins with the representation of H as a 

direct sum of injective indecomposables. We view H as a coalgebra only. We 

know that every simple right H-comodule is L(r) for some r by [CK 1] (or using 

the fact that  H = U ° and the classification of the simple finite-dimensional 
U¢-modules). Let I(r) be the injective hull of L(r), and put m(r) = dimL(r) .  

According to J. Green [Gr, 1.5] we have 

(5.1) g = ~ I ( r )  re(r), 
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where re(r) is the multiplicity of I(r) in H, because the L(r) are absolutely 

simple. Decomposition (5.1) is unique up to isomorphism; see [Gr, 1.bg]. 

We refer to the representation (5.1) for a coalgebra C as the  Green  decom- 

posit ion for C. 

We denote by I(r) (j),j = 1 , . . . ,  re(r), the j-th copy of I(r) in H. Let C be a 

subcoalgebra of H. We want to connect the structure of a subcoalgebra to that 

of injective comodules. The first step is 

PROPOSITION 2: (i) C = ( ~ ( ( ~ j  C n I(r)(J)). 
(ii) The set of subcomodules C n I(r) (1) determines C. 

Proof." (i) holds iff every component of an x E C lies in C. Hence assume 

x = ~xr , j  and let 7rr,j be the projection of H on I(r) (j). By Lemma 7 we can 

regard 7cr,j as an element of H*. As C ~ ~rT,j C C, the proof is complete. 

(ii) It suffices to show that for every isomorphism ¢: I(r) (1) ~_ I(r)(J), 
(C N I(r)(1))¢ = C N I(r) (j). Since ¢ can be lifted to an H-endomorphism 

of H, we can view ¢ as an element of H*. But then (C M I(r)(1))¢ C C n I(r) (j) 
for the same reason as above. Since ¢ has an inverse I(r) (j) --~ I(r)O), the 

equality follows. I 

We can improve significantly on the above proposition. We need to introduce 

some notation and terminology. Given a right H-comodule M we say that 

a subcomodule N of M is fully invariant if it is stable under the action of 

Endg(M). In the case M = H denote by HN and C(N) the left H-comodule 

and the subcoalgebra generated by N, respectively. Of course, C(N) = HN. 
We let A~ denote the sublattice of the fully invariant subcomodules of I(r). Let 

11 Ar be the Cartesian product of the Ar and put ~r for the natural projection 

l i a r  -+ At. Set Er,s = HomH(I(r),I(s)) and call an element (X~)reZ+ E l i a r  
balanced if 

XrEr,s C Xs for all r, s. 

Let AC°alg(H) be the lattice of the subcoalgebras of H. Also, in what follows 

we drop the superscript and write I(r) for I(r) (1). 

PROPOSITION 3: The mapping ~: C ~-~ (C N I(r))rcz+ is a lattice embedding 
At°Rig(H) --+ 1-[ At. The image of O is the set of all balanced elements of l- I Ar 

and ~ 0  is a surjection for all r. 

Proof: As in the proof of Proposition 2, for every ¢ E Er,s we have (CNI(r))¢ C 
CNI(s). Thus CnI(r)  EAr for every r and also the sequence 0(C) is balanced. 
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The rest of the proposition is based on several observations. Let lrr be the 

projection of H on I(r). Then the following holds: (i) C M I(r) = C~rr, (ii) for 

every X E At, C(X)~rr = X ,  and (iii) C(X)lrs = XEr,s. 
(i) is obvious. As for (ii), it suffices to show that  C(X)Trr C X. We have 

C(X)Trr  : (HX)Trr  ---- XH*~rr. Pick a ¢ E H*. Then CUr maps X into I(r). 

By injectivity of I(r) ,  ¢Trr is the restriction of a ¢ E End(I(r)) .  As X is fully 

invariant, (ii) follows. 

For (iii) we have C(X)Trs = XH*Trs. As H*Trsli(~) = Er,s, we are done. 

Now, pick two subcoalgebras C and D. For every r E Z + we have 

(C + D) M I(r) = (C + D)Tr~ = CTr~ + D~rr = C M I(r) + D N I(r) 

which proves that  0 is a lattice map. 

Further, suppose (Xr)~ez+ is a balanced sequence. Put  C = ~ C(Xr). Then 

Clrr = ~ C(X~)Trr = X on account of (ii) and (iii). Also, (ii) shows that  ~ 0  is 

a surjection. 1 

The last proposition points to the importance of knowing fully invariant sub- 

comodules of I(r). It will turn out that  these coincide with the subcomodules 

of I(r). Thus we proceed to a description of the subcomodute lattice of I(r) .  In 

this we follow [CK 1, Thm. 5.2]; also see [Ch 2]. 

There is a symmetry at work here expressed, in general, by the e-affine Weyl 

group (cf. [Th]). In the case at hand we will use instead a bijection p: Z -~ Z, 

called an g-reflection. Write m = m0 + mle, where 0 _< m0 _< e -  1. Define 

p(m) = m, if m0 = e - 1 (i.e., m is a Steinberg weight). If m0 ¢ e - 1, then 

set p(m) equal to the reflection of m in the nearest Steinberg weight to the left. 

All in all we have 

p ( m ) = e - 2 - m o + ( m l - 1 ) g  if m o d e - I ,  a n d p ( m ) = m o t h e r w i s e .  

Next, we need to bring in a new family of H-comodules {M(r)tr E Z+}. 

By definition M(r) is the (contragredient) dual of W(r),  i.e., M(r) = W(r)*. 
We note an independent construction of this family. Let A = ]K~ [el, e2] be the 

C-plane, that  is the algebra generated by el, e2 subject to one relation e2el = 

~ele2. A is a Z+-graded algebra with the n-th component A,~ consisting of all 

homogeneous polynomials of degree n; A is also a natural right H-comodule 

algebra via 
= ek ® x k j .  

Each A,~ is a subcomodule and the family {At} coincides with {M(r)}. 

We now state the main facts about I(r) from [CK 1] (see also [Ch 2]). 
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PROPOSITION 4: (1) I (r )  is a local, self-dual comodule. 

(2) I f  r = ~ - 1 + rig is a Steinberg weight, then I(r)  = L(r) .  

(3) I f  r = ro + rle with ro ~ e - 1 and rl > O, then nonzero proper sub- 

comodules of I (r)  are precisely M(r ) ,  W(p- l ( r ) ) ,  L(r).  

(4) I f  r = ro , the nonzero proper subcomodules of  I ( r ) are precisely W (p-1 ( r ) ) 

or L(r).  

We proceed to a description of "links" between the I(r).  

LEMMA 8: d imHomH(I ( r ) ,  I (s ) )  < 1 for all r, s. Equality holds iff  r = p(s) or 

s = p(r). 

Proof: It is well-known [Lu 1] that  W ( m )  has two composition factors L(m)  

and L(p(m)) .  From Proposition 4 we see that  I (r)  and I(s)  have a common 

factor iff r and s are as stated in the lemma. 

Suppose r = p(s) for definiteness. The preceding proposition makes it clear 

that  the multiplicity of L(s)  in I (r )  is 1. Hence the dimension in question is at 

most 1. Now dualize 0 --+ W(s )  ~ I(r)  to get I(r)* ~ W(s)* --+ O. As I(r)  is 

self-dual, we are done. | 

LEMMA 9: Let r = p(s) and fr,  gs be non-zero elements o fHomH (I(r),  I (s))  and 

Homg  (I(s),  I (r)) ,  respectively. Then Ker ]r  = M ( r )  and Kergs = W ( p  -1 (s)). 

Proof: We only consider f t .  From the previous lemma, the image of fr  is 

M(s) .  Since socM(s)  = L(s),  we have f r ( M ( r ) )  = 0. As the codimension of 

M(r)  equals dim M(s) ,  the assertion follows. | 

We combine Propositions 3 and 4 with the last lemma to derive the structure 

of an arbitrary finite-dimensional subcoalgebra of H. 

We say that  a coalgebra is local if it has a unique maximal subcoalgebra. 

Similarly, a comodule is local if it has a unique maximal subcomodule. 

THEOREM 5: The following properties hold for Ann(H) 

(1) The lattice Ann(H) is distributive. 

(2) Every subcoalgebra is a unique sum of local subcoalgebras. 

(3) Every local subcoalgebra has the form C ( X ) ,  where X is a local subco- 

module of an I(r) .  

(4) For a eoalgebra C = C ( X ) ,  where X is a subeomodule of  I (r) ,  the Green 

decomposition is 

C = X '~ '~  @ X ~  ~ @ X ~-~<'~ p(~) p-~(~) 
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with Xp±,(r) = Xr Hom H (I(r), I (p ±1 (r) ) 

Proof: (1) Proposition 4 makes it evident that  the lattice of subcomodules of 

every I(r) is distributive. Then, by a result in [Ste, Cot. 1 of Thm. 4.1], we 

conclude that  every subcomodule is fully invariant. As the class of distributive 

lattices is closed under taking of Cartesian products and sublattices, Ann(H) is 

distributive. 

(2) This is a standard fact in the theory of distributive lattices [DP]. 

(3) In one direction, assume C = C(X) for a local X C I(r). Were C = D + E  

for some proper subcoalgebras D and E, we would have by Proposition 3 

X = C M I(r) = (D + E) M I(r) = D NI(r) + EM I(r),  

a contradiction. 

Conversely, pick a local C. Let Xj = C M I(j). Then C and ~ C(Xj) have 

equal intersection with every I(r) by Proposition 3, hence they are equal by 

Proposition 2. Thus C = C(Xj)  for some Xj. This forces Xj to be local, 

for were Xj = X~j + Xj' with proper Xj, Xj', so would C be a sum of proper 

subcoalgebras. 

(4) As L(r) is the socle of I(r)(J), C M I(r) (j) is an indecomposable sub- 

comodule of C. Proposition 2(i) gives C-injectivity of these and the Green 

decomposition of C. Further, properties (i)-(iii) in the proof of Proposition 3 

say that  C(X) = ~s(XEr,s )  m~. But by Lemma 8, Er,s ~ 0 iff s = p(r) or 

s = p-l(r).  I 

We pass on to a classification of the cofinite ideals. A few preliminaries are in 

order. Given an H-comodule M, annv M is the annihilator of M in U, where 

M is regarded as a U-module via the duality (,). For an ideal N of U and a 

U-module I,  anal  N denotes the submodule {x C I iNx  = 0}. 

For an H-comodule M, cf(M) denotes the coeff icient  space  of M defined 

in [Gr]. 

LEMMA 10: If  M is a subcomodule of H, then cf(M) = C(M), and C(M) ± = 

annu M 

Proof: By the definition of cf(M) one has cf(M) ± = annu M. 

By ([Gr, 1.2f]), cf(M) is a subcoalgebra containing M, whence C(M) C 
cf(M). Conversely, pick m E M and let A(m) = ~ m~ ® m~'. Then m ~ m* = 

m~' E C(M) for every i. But, by definition, cf(M) is spanned by the various 
I !  m i as m runs over a basis for M. I 
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We exploit the duality between H and U to obtain 

THEOREM 6: Let X run over the set of injective indecomposable H-comodules 

and their Iocal subcomodules. 

Any  co~nite ideal of U is a unique intersection of the ideals annu X.  I 

Our next goal is to give the structure of the ideals annv X of the previous 

theorem. 

Two weights r and s are called l inked  if r = p(s) or r = p - l ( s ) .  The linkage 

generates an equivalence relation on Z + × Z +. The class of r, bl(r), is called the 

block of r. If r is not a Steinberg weight, i.e., r0 ~ ~ - 1, then bl(r) = bl(m), 

where m is the smallest weight in bl(r). Such an m is necessarily restricted, 

that  is, 0 _< m < g - 1. The set bl(r) equals {p-i(ro)Ii E Z+}. We remark that 

~sebl(r)  I(s)  d" is exactly the block subcoalgebra summand of H containing 

I(r) ,  whence our notation. We may ignore all injectives not in the block of I(r).  

For those in the block we write rj = p-J(ro) and I ( j )  = I(r j ) .  

LEMMA 11: Let N be a co~nite ideal of U, C = N ± and I one of the I ( j ) .  Put  

X = C M I. Then X = ann1N.  

Proof: For a subcomodule Y C I,  N Y  = 0 iff N C cf(Y) ±. Therefore C = 

N ± D c f (Y)  ±± = cf(Y). However, cf(Y) = C ( Y )  and therefore C D C(Y) ,  

which implies X D Y by Proposition 3. Thus X is the largest subcomodule of 

I annihilated by N. I 

Let X be as in Theorem 6 and let 

(5.2) X = X 1 D X 2 D . . . D X t D 0  ( t < 4 )  

be a composition series for X. Let {Li} be the set of composition factors of 

(5.2) in order from top to bottom. Put  Ci = cf(Li) and mi = annu Li. 

Recall that  A A B denotes the wedge [Sw, 9.0] of two subspaces A and B. 

THEOREM 7: In the foregoing notation 

C ( X )  = Ct A . . .  A C1 or equivalently annu X -= rot . .  "ml. 

Proof'. Recall that  mi = C~- by Lemma 10, while from [Sw, 9.0.0(b)], which 

holds for our pairing as well, we derive (Ct A . . .  A C1)" = m t . . . m l .  

Let N = m t . ' . m l  and put D = N ±. We will prove the equality D = C ( X )  

by showing that  D M I (k)  = C ( X )  M I(k)  for all k (see Proposition 2). The 

original Hopf pairing U × H --+ IK induces the pairing U / N  × D --~ 1K, which is 
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clearly nondegenerate. It follows that  the algebras D* and U/N are isomorphic. 

As nmi is the radical of U/N,  we conclude that  

corad(D) = (radD*) ± = Z m~ = Z Ci. 

Suppose X C I(j). Apart from the trivial case X = L(j), X can be equal to 

M(j ) ,  W(j  + 1) or I(j). The first two cases are similar. Thus we consider two 

cases. 

(1) Let X = M ( j ) , j  > 0. By Theorem 5(4) and Lemmas 8 and 9, 

C(X) N I ( j - 1 ) = L ( j - 1 )  and C(X) A I ( k ) = O  f o r k ~ j - l , j .  

On the other hand, whenever D n I(k) ~ O, D ~ soc I(k) = L(k). But L(k) is 

in the coradical of D iff k = j - 1, j .  Thus we reduce to two cases. 

(i) Suppose D N I ( j )  ~ M(j) ;  then D DD_ W ( j + I ) .  Since L ( j + I )  is a 

composition factor of W(j  + 1), but doesn't lie in the corad(D), we arrive at a 

contradiction. 

(ii) Assume D N I( j  - 1) D L(j - 1). Then by the same argument as in (i), 

D n I( j  - 1) C__ W(j).  Suppose we have equality there. Using Lemma 11 we 

would have N W ( j )  -- 0. Now N = mjmj_l and mj- lL ( j )  = L(j) on account 

of mj-1 + mj -- U. But L(j) is the top composition factor of W(j) ,  hence 

N W ( j )  = mjW(j )  = 0, which is impossible, since W(j)  is not semisimple. This 

completes case (1). 

(2) Let X = I(j)  for a j ~ 1. Combining Theorem 5 and Lemmas 8 and 9 we 

get C(X) n I( j  - 1) -- W(j)  (for j > 0) and C(X) N I( j  + 1) = M( j  + 1). 

On the other hand, L(k) is in the socle of D iff k • {j - 1 , j , j  + 1}. Therefore 

D N I(k) ~ 0 for those k only. Were D n I(k) ~ C(X) n I(k) then D would have 

a simple subcomodule L(s) with s ~ {j - 1, j ,  j + 1}, a contradiction. 

The last case to consider is when X = I(1). Here we must dispose of the 

possibility D N I(0) = I(0). If this holds, then NI(O) = 0 follows. Now by 

definition N = mlnaom2ml; hence NI(O) = (mlm0)I(0) on account of raiL(0) = 

n(0) for i = 1,2. Further, moI(0) = W(1), for otherwise I(O)/L(O) would be 

a semisimple U-module, a contradiction. It follows that  mlW(1) = 0, which is 

again impossible, since W(1) is not semisimple. We conclude that  D N I(0) = 

W(1), and the proof is complete. I 

Remark 4: The annihilator in case (1) in the above proof is a particular in- 

stance of the annihilator of an R-module E representing a non-zero element of 

Ext , (Y,  X) where X and Y are simple finite-dimensional R-modules. Denote 
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by mx and my the annihilators in R of those simple modules. The following 

holds: annn E = m x m v  if and only if dim Ext~(Y, X) _< 1. This is the case, of 

course, for every two U-simples. 
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